Multiple Regression Analysis

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + u \]
Assumptions of the Classical Linear Model (CLM)

- So far, we know that given the Gauss-Markov assumptions, OLS is BLUE
- In order to do classical hypothesis testing, we need to add another assumption (beyond the Gauss-Markov assumptions)
- The Normality Assumption
 - Assume that \(u \) is independent of \(x_1, x_2, \ldots, x_k \) and \(u \) is normally distributed with zero mean and variance \(\sigma^2 \): \(u \sim \text{Normal}(0, \sigma^2) \)
CLM Assumptions (cont)

- Under CLM, OLS is not only BLUE, but is the minimum variance unbiased estimator.
- We can summarize the population assumptions of CLM as follows:
 \[y \mid x \sim \text{Normal}(\beta_0 + \beta_1 x_1 + \ldots + \beta_k x_k, \sigma^2) \]
- While for now we just assume normality, clear that sometimes not the case.
- Large samples will let us drop normality.
The homoskedastic normal distribution with a single explanatory variable

\[E(y|x) = \beta_0 + \beta_1 x \]

Normal distributions
Normal Sampling Distributions

Under the CLM assumptions, conditional on the sample values of the independent variables

\[\hat{\beta}_j \sim \text{Normal}[\beta_j, \text{Var}(\hat{\beta}_j)] \]

so that

\[\frac{(\hat{\beta}_j - \beta_j)}{\text{sd}(\hat{\beta}_j)} \sim \text{Normal}(0, 1) \]

\(\hat{\beta}_j \) is distributed normally because it is a linear combination of the errors
The t Test

Under the CLM assumptions

\[
\frac{(\hat{\beta}_j - \beta_j)}{se(\hat{\beta}_j)} \sim t_{n-k-1}
\]

Note this is a t distribution (vs normal) because we have to estimate σ^2 by $\hat{\sigma}^2$

Note the degrees of freedom: $n - k - 1$
The t Test (cont)

- Knowing the sampling distribution for the standardized estimator allows us to carry out hypothesis tests
- Start with a null hypothesis
- For example, $H_0: \beta_j = 0$
- If accept null, then accept that x_j has no effect on y, controlling for other x's
The \(t \) Test (cont)

To perform our test we first need to form

"the" \(t \) statistic for \(\hat{\beta}_j : t_{\hat{\beta}_j} = \frac{\hat{\beta}_j}{se(\hat{\beta}_j)} \)

We will then use our \(t \) statistic along with a rejection rule to determine whether to accept the null hypothesis, \(H_0 \).
\(t \) Test: One-Sided Alternatives

Besides our null, \(H_0 \), we need an alternative hypothesis, \(H_1 \), and a significance level.

- \(H_1 \) may be one-sided, or two-sided.
- \(H_1: \beta_j > 0 \) and \(H_1: \beta_j < 0 \) are one-sided.
- \(H_1: \beta_j \neq 0 \) is a two-sided alternative.

If we want to have only a 5\% probability of rejecting \(H_0 \) if it is really true, then we say our significance level is 5\%.
One-Sided Alternatives (cont)

- Having picked a significance level, α, we look up the $(1 - \alpha)^{th}$ percentile in a t distribution with $n - k - 1$ df and call this c, the critical value.
- We can **reject** the null hypothesis if the t statistic is greater than the critical value.
- If the t statistic is less than the critical value then we **fail to reject** the null.
One-Sided Alternatives (cont)

\[y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i \]

\[H_0: \beta_j = 0 \]
\[H_1: \beta_j > 0 \]

Fail to reject

\[(1 - \alpha) \]

\[\alpha \]

0, c
One-sided vs Two-sided

Because the t distribution is symmetric, testing $H_1: \beta_j < 0$ is straightforward. The critical value is just the negative of before.

We can reject the null if the t statistic < $-c$, and if the t statistic > than $-c$ then we fail to reject the null.

For a two-sided test, we set the critical value based on $\alpha/2$ and reject $H_1: \beta_j \neq 0$ if the absolute value of the t statistic > c.
Two-Sided Alternatives

\[y_i = \beta_0 + \beta_1 X_{i1} + \ldots + \beta_k X_{ik} + u_i \]

\(H_0: \beta_j = 0 \)
\(H_1: \beta_j \neq 0 \)

 rejects \[\alpha/2 \] and \[(1 - \alpha) \]

 fail to reject \[\alpha/2 \] and \[(1 - \alpha) \]
Summary for $H_0: \beta_j = 0$

- Unless otherwise stated, the alternative is assumed to be two-sided.
- If we reject the null, we typically say “x_j is statistically significant at the $\alpha \%$ level.”
- If we fail to reject the null, we typically say “x_j is statistically insignificant at the $\alpha \%$ level.”
Testing other hypotheses

- A more general form of the t statistic recognizes that we may want to test something like $H_0: \beta_j = a_j$

- In this case, the appropriate t statistic is

$$t = \frac{\hat{\beta}_j - a_j}{se(\hat{\beta}_j)}$$

where $a_j = 0$ for the standard test
Confidence Intervals

Another way to use classical statistical testing is to construct a confidence interval using the same critical value as was used for a two-sided test.

A \((1 - \alpha)\) % confidence interval is defined as

\[
\hat{\beta}_j \pm c \cdot se(\hat{\beta}_j), \text{ where } c \text{ is the } \left(1 - \frac{\alpha}{2}\right) \text{ percentile in a } t_{n-k-1} \text{ distribution}
\]
Computing \(p \)-values for \(t \) tests

- An alternative to the classical approach is to ask, “what is the smallest significance level at which the null would be rejected?”
- So, compute the \(t \) statistic, and then look up what percentile it is in the appropriate \(t \) distribution – this is the \(p \)-value
- \(p \)-value is the probability we would observe the \(t \) statistic we did, if the null were true
Stata and p-values, t tests, etc.

- Most computer packages will compute the p-value for you, assuming a two-sided test.
- If you really want a one-sided alternative, just divide the two-sided p-value by 2.
- Stata provides the t statistic, p-value, and 95% confidence interval for $H_0: \beta_j = 0$ for you, in columns labeled “t”, “P > |t|” and “[95% Conf. Interval]”, respectively.

IMPORTANT: small p-values are evidence against the null; large values provide little evidence against the null.
Statistical VS Economic Significance

- The statistical significance of a variable x_j is determined entirely by the size of t_β which depends on:
 - The size of β
 - Standard error of β

- The economic (or practical) significance depends not just on the size but the sign of β
Testing a Linear Combination

Suppose instead of testing whether β_1 is equal to a constant, you want to test if it is equal to another parameter, that is $H_0 : \beta_1 = \beta_2$

Use same basic procedure for forming a t statistic

$$t = \frac{\hat{\beta}_1 - \hat{\beta}_2}{se(\hat{\beta}_1 - \hat{\beta}_2)}$$
Testing Linear Combo (cont)

Since

\[se(\hat{\beta}_1 - \hat{\beta}_2) = \sqrt{Var(\hat{\beta}_1 - \hat{\beta}_2)} \]

then

\[Var(\hat{\beta}_1 - \hat{\beta}_2) = Var(\hat{\beta}_1) + Var(\hat{\beta}_2) - 2Cov(\hat{\beta}_1, \hat{\beta}_2) \]

\[se(\hat{\beta}_1 - \hat{\beta}_2) = \left\{ se(\hat{\beta}_1)^2 + se(\hat{\beta}_2)^2 - 2s_{12} \right\}^{\frac{1}{2}} \]

where \(s_{12} \) is an estimate of \(Cov(\hat{\beta}_1, \hat{\beta}_2) \)
Testing a Linear Combo (cont)

- So, to use formula, need s_{12}, which standard output does not have.
- Many packages will have an option to get it, or will just perform the test for you.
- In Stata, after `reg y x1 x2 ... xk` you would type `test x1 = x2` to get a p-value for the test.
- More generally, you can always restate the problem to get the test you want.
Multiple Linear Restrictions

Everything we’ve done so far has involved testing a single linear restriction, (e.g. $\beta_1 = 0$ or $\beta_1 = \beta_2$)

However, we may want to jointly test multiple hypotheses about our parameters

A typical example is testing “exclusion restrictions” – we want to know if a group of parameters are all equal to zero
Testing Exclusion Restrictions

- Now the null hypothesis might be something like \(H_0: \beta_{k-q+1} = 0, \ldots, \beta_k = 0 \)
- The alternative is just \(H_1: H_0 \) is not true
- Can’t just check each \(t \) statistic separately, because we want to know if the \(q \) parameters are jointly significant at a given level – it is possible for none to be individually significant at that level
Exclusion Restrictions (cont)

To do the test we need to estimate the “restricted model” without x_{k-q+1}, \ldots, x_k included, as well as the “unrestricted model” with all x’s included.

Intuitively, we want to know if the change in SSR is big enough to warrant inclusion of x_{k-q+1}, \ldots, x_k.

$$F \equiv \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}, \text{ where}$$

r is restricted and ur is unrestricted.
The F statistic

- The F statistic is always positive, since the SSR from the restricted model can’t be less than the SSR from the unrestricted.
- Essentially the F statistic is measuring the relative increase in SSR when moving from the unrestricted to restricted model.
- $q = \text{number of restrictions, or } df_r - df_{ur}$
- $n - k - 1 = df_{ur}$
The F statistic (cont)

To decide if the increase in SSR when we move to a restricted model is “big enough” to reject the exclusions, we need to know about the sampling distribution of our F stat.

Not surprisingly, $F \sim F_{q,n-k-1}$, where q is referred to as the numerator degrees of freedom and $n - k - 1$ as the denominator degrees of freedom.
The F statistic (cont)

Reject H_0 at α significance level if $F > c$
The R^2 form of the F statistic

Because the SSR’s may be large and unwieldy, an alternative form of the formula is useful.

We use the fact that $SSR = SST(1 - R^2)$ for any regression, so can substitute in for SSR_u and SSR_{ur}

$$F \equiv \frac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k - 1)}$$

where again r is restricted and ur is unrestricted
Overall Significance

- A special case of exclusion restrictions is to test H_0: $\beta_1 = \beta_2 = \ldots = \beta_k = 0$
- Since the R^2 from a model with only an intercept will be zero, the F statistic is simply

$$F = \frac{R^2 / k}{\left(1 - R^2\right) / (n - k - 1)}$$
General Linear Restrictions

- The basic form of the F statistic will work for any set of linear restrictions.
- First estimate the unrestricted model and then estimate the restricted model.
- In each case, make note of the SSR.
- Imposing the restrictions can be tricky – will likely have to redefine variables again.
F Statistic Summary

- Just as with t statistics, p-values can be calculated by looking up the percentile in the appropriate F distribution.

- Stata will do this by entering: `display fprob(q, n - k - 1, F)`, where the appropriate values of F, q, and $n - k - 1$ are used.

- If only one exclusion is being tested, then $F = t^2$, and the p-values will be the same.