Lecture 15 **First Order Linear Differential Equations**

A **first order differential equation** is one with the general form:

\[
\frac{dy}{dx} + P(x) \cdot y = Q(x)
\]

For instance,

\[
\frac{dy}{dx} + \frac{y}{x} = e^{-x}
\]

This equation cannot be solved in its present form. Then multiplying both sides by \(x\), we get

\[
x \frac{dy}{dx} + y = xe^{-x}
\]

\[
\Rightarrow x \frac{d}{dx} (y) + y \frac{dx}{dx} = xe^{-x}
\]

\[
\Rightarrow \frac{d}{dx} (xy) = xe^{-x}
\]

\[
\Rightarrow \int \frac{d}{dx} (xy) \, dx = \int xe^{-x} \, dx
\]

\[
\Rightarrow xy = \int xe^{-x} \, dx
\]

\[
\Rightarrow xy = -(x + 1)e^{-x} + C \quad \text{using by parts integration}
\]

We can solve the result for \(y\), and get:

\[
y = \frac{1}{x} \{-(x + 1)e^{-x} + C\}
\]

Solution of a First Order Linear Differential Equation by Definition

A solution for the differential equation

\[
\frac{dy}{dx} + P(x) \cdot y = Q(x)
\]

Can be determined by:

\[
y = \frac{1}{I(x)} \left[\int I(x) Q(x) \, dx + C \right]
\]

Where \(I(x) = e^{\int P(x) \, dx}\)

Class Practice Assignment:

Page 632 – 633 of the text book: Q.no. 11, 12, 15, 16, 27, 28 and 29
Example 1: Find the general solution for first-order differential equation:

\[\frac{dy}{dx} - 2xy = x \]

Here \(P(x) = -2x \) and \(Q(x) = x \), then

\[I(x) = e^{\int P(x)dx} = e^{\int (-2x)dx} = e^{-x^2} \]

Therefore,

\[y = \frac{1}{I(x)} \left[\int I(x)Q(x) \, dx + C \right] = \frac{1}{e^{-x^2}} \left[\int e^{-x^2} x \, dx + C \right] \]

Solving \(\int e^{-x^2} \, dx \) by substitution by supposing \(u = -x^2 \Rightarrow du = -2xdx \), we get

\[\int e^{-x^2} x \, dx = \frac{-1}{2} \int e^u \, du = -\frac{1}{2} e^u = -\frac{1}{2} e^{-x^2} \]

Thus, \(y = \frac{1}{e^{-x^2}} \left[-\frac{1}{2} e^{-x^2} + C \right] \)

Example 2: (pg. 632 Ex. 8.2 Q.no. 6) Find the general solution for first-order differential equation:

\[x \frac{dy}{dx} + 2y = xe^{x^3} \]

Rewriting the differential equation by multiplying both sides by \(x \), we get

\[\frac{dy}{dx} + 2 \frac{y}{x} = e^{x^3} \]

Here \(P(x) = \frac{2}{x} \) and \(Q(x) = e^{x^3} \), then

\[I(x) = e^{\int P(x)dx} = e^{\int (2/x)dx} = e^{2\ln x} = e^\ln x^2 = x^2 \]

Therefore,

\[y = \frac{1}{I(x)} \left[\int I(x)Q(x) \, dx + C \right] = \frac{1}{x^2} \left[\int x^2 e^{x^3} \, dx + C \right] \]

Solving \(\int x^2 e^{x^3} \, dx \) by substituting \(u = x^3 \Rightarrow du = 3x^2\, dx \), we get

\[\int x^2 e^{x^3} \, dx = \frac{1}{3} \int e^u \, du = \frac{1}{3} e^u = \frac{1}{3} e^{x^3} \]

Thus, \(y = \frac{1}{e^{-x^2}} \left[\frac{1}{3} e^{x^3} + C \right] \)

Example 3: (pg. 633 Ex. 8.2 Q.no. 19) Find the particular solution for first-order differential equation that satisfies the given condition \(y = -2 \) when \(x = 1 \)

\[\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2} \]

Here \(P(x) = \frac{1}{x} \) and \(Q(x) = \frac{1}{x^2} \), then

\[I(x) = e^{\int P(x)dx} = e^{\int (1/x)dx} = e^\ln x = x \]

Therefore,
\[
y = \frac{1}{I(x)} \left[\int I(x)Q(x) \, dx + C \right] = \frac{1}{x} \left[\int x \left(\frac{1}{x^2} \right) \, dx + C \right]
\]
\[
= \frac{1}{x} \left[\int \frac{1}{x} \, dx + C \right]
\]
\[
= \frac{1}{x} \ln x + C
\]

Thus, \(y = \frac{1}{x} \ln x + C \)

Now using the given condition that \(y = -2 \) when \(x = 1 \), we get

\[
-2 = \frac{1}{1} \ln 1 + C
\]
\[
\Rightarrow C = -2
\]

Hence, \(y = \frac{1}{x} \ln x - 2 \)

Example 4: (pg. 627 e.g. 8.2.3) David deposits $20,000 into an account in which interest accumulates at the rate of 5% per year, compounded continuously. He plans to withdraw $3,000 per year.

a. Set up and solve a differential equation to determine the value \(Q(t) \) of his account \(t \) years after the initial deposit.

b. How long does it take for his account to be exhausted?

Solution:

a. If no withdrawals are made, the value of the account would change at a percentage rate equal to the annual interest rate; that is,

\[
\frac{100Q'(t)}{Q(t)} = 5
\]

Or equivalently, \(Q'(t) = 0.05Q(t) \). This is the rate at which interest is added to the account, and by subtracting the annual withdrawal rate of $3,000, we obtain the net rate of change of the account; that is,

\[
\frac{dQ}{dt} = 0.05Q - 3000
\]

net rate of change of \(Q = \) rate at which interest is added − rate at which money is withdrawn

Rewriting this equation as

\[
\frac{dQ}{dt} - 0.05Q = -3000
\]

We recognize it as a first-order linear differential equation with \(p(t) = -0.05 \) and \(q(t) = -3000 \) that we wish to solve subject to the initial condition that \(Q(0) = 20,000 \). The integrating factor for this equation is

\[
I(t) = e^{\int -0.05 \, dt} = e^{-0.05t}
\]

So the general solution is

\[
Q(t) = \frac{1}{e^{-0.05t}} \left[\int e^{-0.05t}(-3000) \, dt + C \right] = e^{0.05t} \left[-3000 \frac{e^{-0.05t}}{-0.05} + C \right] = 60,000 + Ce^{0.05t}
\]
Since $Q(0) = 20,000$, we have

$$Q(t) = 60,000 + Ce^{0.05t}$$
$$\Rightarrow 20,000 = 60,000 + Ce^0$$
$$\Rightarrow C = -40,000$$

And therefore,

$$Q(t) = 60,000 - 40,000e^{0.05t}$$

b. The account becomes exhausted when $Q(t) = 0$. Solving the equation

$$Q(t) = 60,000 - 40,000e^{0.05t}$$
$$\Rightarrow 0 = 60,000 - 40,000e^{0.05t}$$
$$\Rightarrow 40,000e^{0.05t} = 60,000$$
$$\Rightarrow e^{0.05t} = \frac{60,000}{40,000} = 1.5$$
$$\Rightarrow 0.05t = \ln 1.5$$
$$\Rightarrow t = 8.11$$

Thus, the account is exhausted in approximately 8 years.